La teoria della relatività di Einstein rimane forte dopo la sfida quantistica

Il concetto di fisica quantistica della gravità

I ricercatori hanno confermato un presupposto fondamentale della fisica con una precisione senza precedenti: che varie proprietà della massa, come il peso, l’inerzia e la gravità, sono sempre equivalenti, indipendentemente dalla composizione specifica della massa coinvolta. Ciò rafforza il principio di equivalenza, essenziale per la teoria della relatività di Einstein, e affronta il punto critico di differenza tra la fisica classica e quella quantistica.

I gruppi di ricerca dell’Università Leibniz di Hannover e dell’Università di Brema confermano un altro principio di equivalenza.

Gli scienziati hanno utilizzato mezzo secolo di dati sulla distanza laser lunare per confermare con una precisione 100 volte maggiore che tutte le proprietà di massa sono uguali. Questa scoperta supporta notevolmente il principio di equivalenza di Einstein, che è una pietra angolare della teoria della relatività.

Uno dei presupposti fondamentali della fisica fondamentale è che le diverse proprietà della massa – peso, inerzia e gravità – rimangono sempre le stesse l’una rispetto all’altra. Senza questa equivalenza, la teoria della relatività di Einstein sarebbe contraddittoria e i libri di testo di fisica esistenti dovrebbero essere riscritti. Sebbene tutte le misurazioni fino ad oggi confermino il principio di equivalenza, la teoria quantistica postula che ci debba essere una violazione. Questa discrepanza tra la teoria gravitazionale di Einstein e la moderna teoria quantistica è il motivo per cui test più rigorosi del principio di equivalenza sono particolarmente importanti.

Un team del Center for Applied Space Technology and Microgravity (ZARM) dell’Università di Brema, in collaborazione con l’Institute for Geodesy (IfE) dell’Università Leibniz di Hannover, ha dimostrato con successo che è 100 volte più grande.[{” attribute=””>accuracy that passive gravitational mass and active gravitational mass are always equivalent – regardless of the particular composition of the respective masses. The research was conducted within the framework of the Cluster of Excellence “QuantumFrontiers.” On July 13, the team published their findings as a highlights article in the scientific journal Physical Review Letters.

Binary System Earth Moon

Binary system Earth-Moon. Credit: AEOS Medialab, ESA 2002

Physical context

Inertial mass resists acceleration. For example, it causes you to be pushed backward into your seat when the car starts. Passive gravitational mass reacts on gravity and results in our weight on Earth. Active gravitational mass refers to the force of gravitation exerted by an object, or more precisely, the size of its gravitational field. The equivalence of these properties is fundamental to general relativity. Therefore, both the equivalence of inertial and passive gravitational mass and the equivalence of passive and active gravitational mass are being tested with increasing precision.

Vishwa Vijay Singh

First Author of the Publication, Vishwa Vijay Singh. Credit: Singh

What was the study about?

If we assume that passive and active gravitational mass are not equal – that their ratio depends on the material – then objects made of different materials with a different center of mass would accelerate themselves. Since the Moon consists of an aluminum shell and an iron core, with centers of mass offset against each other, the Moon should accelerate. This hypothetical change in speed could be measured with high precision, via “Lunar Laser Ranging.” This involves pointing lasers from Earth at reflectors on the Moon placed there by the Apollo missions and the Soviet Luna program. Since then, round trip travel times of laser beams are recorded. The research team analyzed “Lunar Laser Ranging” data collected over a period of 50 years, from 1970 to 2022, and investigated such mass difference effects. Since no effect was found, this means that the passive and active gravitational masses are equal to approximately 14 decimal places. This estimate is a hundred times more accurate than the best previous study, dating back to 1986.

Unique expertise

LUH’s Institute of Geodesy – one of only four centers worldwide analyzing laser distance measurements to the Moon – has unique expertise in assessing the data, particularly for testing general relativity. In the current study, the institute analyzed the Lunar Laser Ranging measurements, including error analysis and interpretation of the results.

Vishwa Vijay Singh, Jürgen Müller and Liliane Biskupek from the Institute of Geodesy at Leibniz University Hannover, as well as Eva Hackmann and Claus Lämmerzahl from the Center of Applied Space Technology and Microgravity (ZARM) at the University of Bremen published their findings in the journal Physical Review Letters, where the paper was highlighted in the category “editors’ suggestion.”

Reference: “Equivalence of Active and Passive Gravitational Mass Tested with Lunar Laser Ranging” by Vishwa Vijay Singh, Jürgen Müller, Liliane Biskupek, Eva Hackmann and Claus Lämmerzahl, 13 July 2023, Physical Review Letters.
DOI: 10.1103/PhysRevLett.131.021401

READ  Abituatevi: lo scoppio del Corona virus dà un assaggio di convivenza con il virus

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *